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Abstract As with other software development artifacts,
model transformations are not bug-free and so must be sys-
tematically verified. Their nature, however, means that trans-
formations require specialist verification techniques. This
paper brings together current research on model transforma-
tion verification by classifying existing approaches along two
dimensions. Firstly, we present a coarse-grained classifica-
tion based on the technical details of the approach (e.g., test-
ing, theorem proving, model checking). Secondly, we present
a finer-grained classification which categorizes approaches
according to criteria such as level of formality, transforma-
tion language, properties verified. The purpose of the survey
is to bring together research in model transformation verifi-
cation to act as a resource for the community. Furthermore,
based on the survey, we identify a number of trends in current
and past research on model transformation verification.
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1 Introduction

In model-driven development (MDD), instead of focussing
their efforts on constructing code, developers build models
and, in particular, create model transformations that trans-
form these models into new models or code. As with other
software development artifacts, however, model transforma-
tions are not free from bugs and, thus, they must be verified
and validated.

Verifying a transformation that transforms one artifact into
another is fundamentally more complex than verifying an
individual artifact itself [11,38]. This is true whether the
artifact is a model or a program.! To illustrate why trans-
formation verification is more difficult than artifact verifi-
cation, consider the case when the artifact is Java code and
the transformation is from a UML model to Java code. Now,
consider the challenges in verifying the artifact (i.e., a pro-
gram) versus verifying the transformation. We will consider
the special case when verification is done via testing. When
testing a program, inputs and outputs are typically values or
sequences of events. Although there are many difficult chal-
lenges when testing a program, checking whether a test out-
put matches the expected output is usually relatively straight-
forward because it is just a case of comparing values or event
sequences. In testing a model-to-code transformation, how-
ever, the output is a program, not a value or event sequence.
A program is a complex data structure with behavior and
so comparing the output program with an expected program
is non-trivial because one has to show that the output and

' Arguably, a program is a type of model, and, in fact, we would agree
with this view; the difference lies in the level of abstraction. Here,
we make the distinction only to emphasize that there are two sep-
arate research communities—on model transformation and program
transformation—but that they both face similar challenges in terms of
verification.
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expected programs have the same semantics. The situation
is similar when verifying model-to-model transformations.

Many researchers therefore argue that specialist tech-
niques are required [11,57] to verify model transformations
due to challenges that are specific to transformations. For
example,

1. In the case of testing model-to-model transformations,
there are two key difficulties. Firstly, the input models for
test cases must be described according to the metamodel
of the source modeling language. This makes it challeng-
ing to generate test cases automatically since state-of-
practice metamodels are highly complex. Furthermore,
a naive algorithm to generate test cases according to a
given source metamodel will produce many irrelevant or
inconsistent test models; therefore, a test case genera-
tor must be highly intelligent. Secondly, it is challeng-
ing to compare the generated target model for a given
test case with the oracle. Both the oracle and the tar-
get are models. Comparing the oracle and target can be
done either syntactically—in which case, the comparison
algorithm must compare two graphs (since a metamodel
instance can be seen as a graph), which boils down to the
graph isomorphism problem, which is NP-complete—or
semantically—in which case, the comparison algorithm
must have deep knowledge of the semantics of the target
language.

2. In the case of more formal verification approaches, such
as formally checking a specification of the rules of a
model transformation, the challenge is scalability since
an industrial model transformation will include hundreds
of rules. In this case, the problem is analogous to com-
piler verification, which is a long-standing problem in
computer science (cf. Hoare’s [41] characterization of a
verifying compiler as a grand challenge for computing
research).

3. In addition to these challenges, the diversity of model
transformation languages that are used in practice brings
further issues. There is no universally accepted language
for writing model transformations and so a verifica-
tion approach that can be generally applied needs to be
independent of the model transformation language used
in particular cases. This is clearly difficult for formal
approaches that verify transformation rules.

Given the challenges of verifying model transformations,
recent years have seen a concerted effort to provide new
approaches that are tailored to the specifics of model transfor-
mation verification. This paper surveys current approaches
for verifying model transformations and classifies them along
a number of dimensions. We present both a coarse-grained
classification based on the technical approach (e.g., testing,
theorem proving, model checking) and a finer-grained clas-
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sification which categorizes approaches according to criteria
such as level of formality, transformation language, proper-
ties verified. The purpose of the survey is to bring together
research in model transformation verification to act as a
resource for the community and to identify a number of trends
in current and past research on model transformation verifi-
cation.

Before continuing, we wish to clarify terminology used
in the paper. First of all, there is some confusion in the liter-
ature over the definitions of verification and validation. We
follow Boehm [14] and consider verification as building the
thing right and validation as building the right thing. Valida-
tion, therefore, is concerned with getting a transformation’s
requirements correct, which is a general software engineer-
ing issue. Verification, on the other hand, is concerned with
checking the properties of model transformations (here, we
include property preservation from source to target). The
survey covers only those approaches which address trans-
formation verification, according to this definition. We note,
however, that we have included approaches that follow our
definition of verification even if their authors have called their
approach validation.

Secondly, we make a distinction in the paper between
formal and informal approaches to transformation verifica-
tion. Although we do not claim that there is a clear bound-
ary between these terms, generally speaking, we refer to
approaches as ‘formal’ if they aim to prove properties of
a model transformation using the formal methods of math-
ematics and aim to guarantee that the properties hold in all
cases. On the other hand, we refer to an approach as ‘infor-
mal’ if a property can only be guaranteed to hold in a sample
of all possible cases. In practice, this means that approaches
based on theorem proving and model checking are classi-
fied as formal, whereas approaches based on testing, metrics,
and inspection are classified as informal. Note that there is
a recent survey on formal verification of model transforma-
tions [4], and this survey only discusses three aspects of trans-
formation verification, i.e., verification techniques, types of
transformations, and types of properties. This paper covers
more aspects (e.g., complexity and tooling) and also includes
informal verification.

Thirdly, discussion of transformation verification relies on
anotion of what it means for a transformation to be ‘correct.’
In the software engineering field, a program is correct if it
meets its requirements. Since a transformation is normally
implemented as a program, this definition also applies to
model transformations. However, different model transfor-
mations have different requirements thus creating a sense
that there are different aspects of correctness, and differ-
ent verification approaches have chosen to focus on differ-
ent aspects depending on the requirements the transforma-
tion is supposed to fulfill. In this paper, we therefore distin-
guish between different notions of correctness. We say that

www.manaraa.com



A survey of approaches for verifying model transformations

1005

a transformation satisfies the type-correctness property if its
target models conform to the abstract syntax of the target
language. A transformation is said to be correct with respect
to static semantics if the target models satisfy the well-
formedness constraints of the target metamodel. A transfor-
mation is correct with respect to dynamic semantics if the
target models preserve a given property of the source model
(these could be domain properties of the source model such as
security, application-specific properties, or properties relat-
ing to the semantics of the source modeling language, e.g.,
run-to-completion semantics for UML state machines). A
transformation can also be deemed correct if the target model
contains the expected target elements corresponding to the
source elements in the source model (e.g., for a UML class
diagram to entity relationship diagram transformation, the
transformation can be said to be correct if it can generate an
entity for each class in the class diagram). We refer to this
aspect of correctness as correspondence correctness. We also
acknowledge that some approaches focus on key properties of
the transformation itself—such as termination, confluence of
transformation rules, and executability. We call these seman-
tics of model transformation properties. These definitions of
correctness properties will be revisited in the classification in
Sect. 3. Note that these definitions come from the literature
on model transformation—in our survey of existing verifica-
tion approaches, each approach defined correctness in one or
more of these ways.

In terms of scope, the authors strictly limit the survey
to verification of transformations and, in particular, exclude
research concerned only with the verification of source and
target artifacts (e.g., models), but which does not consider
transformations of those artifacts. Work on both model-to-
model transformations and model-to-code transformations is
included. The authors, however, do not include code-to-code
transformation because including this type of transformation
implies a much broader remit than intended by this paper.?

The paper is organized as follows. The next section dis-
cusses state-of-the-art approaches in verifying model trans-
formations. The approaches are categorized in broad terms,
according to whether they are testing-based approaches or
apply theorem proving or model checking. Section 3 clas-
sifies the approaches using finer-grained criteria such as the
level of formality, the transformation languages supported,
the transformation paradigms supported, the properties ver-
ified. This section also identifies common trends in research
based on this classification. The paper concludes in Sect. 4
where all the approaches mentioned in Sect. 2 are summa-
rized and gaps in the research are highlighted.

2 Again, program transformation is a separate research community, and
it would be too complex to include all research on program transforma-
tion in this paper.

2 Description of existing research

This section describes existing approaches to model trans-
formation verification. The approaches are first classified
according to a broad-brush criterion, namely the main techni-
cal approach applied: testing, theorem proving, model check-
ing, and graph transformations. Section 3 will present a
much finer-grained classification. To make it easier to cross-
reference each work, we label each approach in the text using
a simple tag. These tags are given in bold and in square
brackets.

2.1 Testing model transformations

There are two significant challenges when trying to apply
testing approaches to model transformations [11]. Firstly,
testing generally tries to automate the generation of test cases
because of the complexity involved. For model transforma-
tions, however, test cases (henceforth, test models) are com-
plex structures with data and behavior, which must conform
to constraints defined in the source metamodel. Generating
realistic test models automatically and efficiently is non-
trivial. Secondly, comparing test oracles to test outputs is also
challenging because it requires a comparison of two models.
Sophisticated comparison techniques are required because
simple ones will fail if the models are syntactically different
even though they may be semantically equivalent.

2.1.1 Generating test models

Approaches to the automatic generation of test models adapt
standard testing techniques, which try to generate test cases
with guaranteed coverage. For test models, an appropriate
notion of coverage is metamodel coverage—that is, each
source metaclass should be instantiated at least once in at least
one test model and, furthermore, properties of metaclasses
(e.g., meta-attributes) should take several representative val-
ues. Wang et al. [103] propose a definition of metamodel
coverage based on MOF [WangRules]. The intuition is that
since all modeling languages used in model-driven architec-
ture (MDA) are defined in MOF, metamodel coverage can be
defined at the MOF level. In particular, metamodel coverage
is defined in terms of core MOF structural concepts—feature,
inheritance, and association. Hence, metamodel coverage is
achieved if feature, inheritance, and association coverage are
also achieved. A similar observation is made in [34] (where,
in fact, EMOF is used) [FleureyEMOF]. The same tech-
nique to achieve metamodel coverage can also be performed
on other metamodels as demonstrated in [35].

Well-known techniques for achieving coverage, e.g.,
equivalence partitioning, can be applied in the context of
model transformations. For example, Fleurey et al. [35] apply
category-partition testing to decompose a source metamodel
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into equivalence classes and then choose representative test
models from each equivalence class [FleureyCBT]. Cate-
gory partitioning is applied by manually identifying equiv-
alence classes of all possible values of a meta-attribute. A
tool will then create a test model for each equivalence class
and select a representative value from the equivalence class
as the value for the meta-attribute.

Partitioning is also used in an approach by Wang
et al. [104] [WangRules] and Stiirmer et al. [90] [Stiirmer-
Framework]. Wang provides tool support for testing trans-
formation rules written in Tefkat [67] using category-
partition testing based on ideas from [35]. Stiirmer follows a
similar approach but uses a related partition testing technique
called the classification-tree method.

A simple application of equivalence partitioning is not
without its problems. Firstly, it will generate a very large
number of test models. Secondly, as pointed out in [35],
a transformation may be intended to work only on a sub-
fragment of the source metamodel. In such cases, it is inef-
fective to generate test models from the entire metamodel.
Fleurey et al. [35] therefore introduce the notion of an ‘effec-
tive metamodel,’ i.e., the fragment of the source metamodel
actually acted on by a transformation [FleuryCBT]. An
effective metamodel is the domain of a partial transfor-
mation on the whole source metamodel. It is shown that
the effective metamodel can be computed automatically by
including every type, attribute, and association referred to
by the transformation specification (i.e., metamodel, OCL
constraints, and transformation pre-conditions). The effec-
tive metamodel can be computed either by examining the
transformation specification (in [35], OCL preconditions in
transformation specifications are used for this purpose) or
by statically analyzing the implementation code of the trans-
formation (an extension of type checking). Another similar
approach is proposed by Lamari [60]. In [60], the effective
metamodel is computed from transformation specifications
written in a specialized transformation language, MTSpecL
[LamariSpec]. Zelenov [108], on the other hand, uses cat-
egory partitioning (inspired by the [WangRules] approach)
to generate effective metamodels [ZelenovEffMeta].

While the notion of effective metamodel does indeed
reduce the size and number of test models generated, it is
sensitive to the correctness of the transformation implemen-
tation. For example, if the transformation implementer for-
gets to handle hierarchical states, test models for hierarchical
states may not be generated. One further problem with gener-
ating test models in this way is that the test models may not be
comprehensible by testers since they merely respect the cov-
erage criteria and will not generally correspond to intuitively
meaningful models. Fleurey et al. [35] therefore argue that
an interactive, rather than fully automatic, approach to test
model generation is preferable. In this case, testers first pro-
vide an initial—intuitive—test model. This is then perturbed
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by a tool to generate a number of similar models that are
both comprehensible and guarantee coverage. These pertur-
bations are provided by applying mutation operators (using
mutation-testing techniques).

Mottu et al. [70] define a set of mutation operators which
are used in the Omogen tool to evaluate metamodel coverage
in this way [18,71] [MottuMutation]. Mutation operators
modify a transformation definition by introducing faults. If a
set of test models cannot detect the fault introduced, then the
test models are incomplete and should be updated. Collection
filtering change with deletion is one of the Mottu’s mutation
operators. It applies to a transformation rule that filters a
collection and purposely deletes filtering, so that the rule
applies to the entire collection. For example, a rule might
apply only to simple states. The mutant rule would instead
apply to any kind of state. If a test model set cannot detect
the error introduced by the mutant rule, then coverage is
insufficient.

Aninteresting application of this mutation-based approach
is presented in [35], where a bacteriologic technique is used
to optimize the generation of test models [FleuryCBT]. The
approach consists of an iterative algorithm which starts with
an initial set of test models and a fitness function (a set of rules
specifying which meta-elements and meta-attributes need to
be covered during verification) based on metamodel cover-
age. The current set of test models is mutated and then re-
evaluated according to the fitness function. This process is
repeated until an ‘optimal’ set of test models has been gener-
ated. Other approaches that use mutations are [29] and [59].
Darabos [29] relies on mutation operators derived from a
fault model of typical faults encountered when writing graph
transformations [DarabosFramework]. Kiister et al. [59]
mutate test models created from declarative specifications of
transformations. A given transformation specification (sim-
ilar to a QVT relational specification) is used to generate a
number of test models by replacing child metaclasses by their
siblings [KiisterWhiteBox]. For example, a transformation
specification acting on instances of state would lead to test
models for state and Pseudo-state.

Sen et al. [85] introduce a somewhat unique way of gen-
erating test models based on the Alloy constraint solver
[SenAlloy]. Four sources of knowledge are taken into
account—the source metamodel (in Ecore and OCL), trans-
formation pre-conditions (in OCL), partitions on the input
domain (expressed in a dedicated language), and transforma-
tion post-conditions (post-conditions are called test model
objectives in [85] and they are expressed in Alloy). The
approach translates and integrates each of these knowledge
sources into a common formalism—Alloy’s first-order rela-
tional logic—and then relies on Alloy to generate test mod-
els based on these four knowledge sources. The Alloy tool
has been shown to be effective at generating instances of a
relational specification by translating the specification into
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a Boolean satisfiability problem which can be solved using
a SAT solver. Sen et al. [86] also experiment with partition
analysis to improve the result of their approach. The scal-
ability of Alloy remains a question, as does, therefore, the
scalability of Sen’s tool, Cartier.

To summarize this section, generation of test models has
received a lot of interest in the literature. Many techniques
have been applied to automatically generate test models, and
these techniques primarily focus on producing meaningful
test models that provide extensive test model coverage.

2.1.2 Developing test oracles

A second major challenge in testing model transformations
concerns test oracles. There are two issues. Firstly, Where do
the oracles come from? Secondly, How to compare the result
of a transformation with the oracle?

Mottu et al. [72] provide a summary of types of oracles
that could be used in testing transformations. Each requires
a different level of input from the user and has been imple-
mented on a sample transformation as a point of comparison
[MottuOracle]. These categories provide a good overview
of alternatives when choosing an oracle: (1) a reference trans-
formation, wherein a known-to-be correct transformation is
referred to which has the same functionality as the transfor-
mation under test (e.g., a declarative version of it); (2) an
inverse transformation, whereby ¢ o +~! (for a transformation
under test 7) is checked to be the identity transformation; (3)
expected output model, wherein the user (manually) provides
the expected result of the transformation; and (4) constraints
(see below).

The most common of these in the literature are (3) and (4).
In the latter case, researchers have looked at checking trans-
formation outputs against pre-existing sources of knowl-
edge given as constraints, e.g., post-conditions of transfor-
mations or invariants on the output language. This is the
approach taken, for example, in [11], which uses a modi-
fied OCL to specify constraints [BaudryContracts]. Check-
ing post-conditions of transformations is self-explanatory. As
for invariants on the output model language, these could be
simply the well-formedness constraints of the target meta-
model but, more generally, can be additional invariants that
restrict the output metamodel in some way. For example,
Whittle and Gajanovic [105] discuss such an approach in
the context of generating code from NASA-relevant domain-
specific models. In this case, there were known properties
regarding the expected structure of the generated code. By
capturing these properties as OCL output invariants (which
go beyond simply well-formedness constraints), outputs of
the code generator can easily be checked for compliance to
an expected structure. A similar approach is taken in [54]
except that a dedicated language—the Epsilon Comparison
Language (ECL)—is used to specify constraints between a

source model and a target model [KolovosECL]. For exam-
ple, an ECL rule could be written to check that a state instance
in the source model corresponds to a Java class with the same
name in the generated code. The use of ECL allows specifi-
cation of constraints across two different metamodels. This
is also supported in Cariou’s work [22] [CariouContracts].
Lano and Clark [63] use a similar approach. They propose a
set of constraints to verify syntactic and semantic correctness
of model transformations [LanoConditions].

The constraints mentioned in the approaches above are
expressed in the form of rules, specified in OCL or other
rule-based languages such as ECL. Another way of express-
ing constraints is by using graph patterns that define expected
combinations of metamodel instances. Model transforma-
tions can then be verified by checking whether a target model
matches certain expected patterns. In standard graph rewrit-
ing approaches, graph rules are defined using patterns: pat-
terns on the left-hand side of a rule contain variables which
match concrete graph instances; if there is a match, the
matched instance is rewritten to the pattern on the right-hand
side of the rule. This type of oracle has been used by Orejas
and Wirsing [76] [OrejasPattern]. Properties to be verified
can be expressed as patterns (containing variables) to match
against in the source and target models. For example, a pat-
tern might specify that every persistent class, if it does not
have a parent class, must be transformed into a table with the
same name as the class. Essentially, this is very similar to the
ECL approach above since it defines a declarative constraint
between source and target which can be checked. The differ-
ence is in the expressiveness of the language used to define
the constraints; graph patterns are typically very expressive
and can, for example, include negative application conditions
specifying the absence of certain metamodel instances.

To summarize, there are two major issues with checking
outputs using constraint-based oracles. Firstly, constraints
only support partial verification since they can only verify
that the target model meets certain conditions or patterns. The
language to write the conditions and patterns is typically not
expressive enough to verify properties such as preservation
of semantic properties. Secondly, the developer must provide
the constraints, which themselves may be erroneous. A more
direct approach is for the developer to produce expected out-
put models (oracle type (3) above). This approach requires
even greater effort from the developer as an expected output
model must be given for each test model. Furthermore, there
needs to be a sophisticated comparison algorithm to check
the transformation’s result against the expected output for
both syntactic and semantic equivalence.

2.1.3 Testing frameworks

For completeness, we briefly mention work on testing
frameworks, i.e., infrastructure designed to support the
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testing approaches described earlier. Frameworks for test-
ing model transformations have been developed by Giner
and Pelechano [37], Darabos et al. [29], Lin et al. [68],
and Stiirmer [90]. The frameworks in [29] [DarabosFrame-
work] and [68] [LinFramework] are very similar. Both have
three main components: test case constructor, testing engine,
and test analyzer.

The framework by Lin et al. requires a tester to provide
a test specification (i.e., a document specifying the trans-
formation rules being tested, the input and output models,
and the oracle). A similar approach is taken by Giner and
Pelechano [37] where the difference is in the transformation
engine used (Lin et al. uses the C-SAW model transformation
engine, while Giner and Pelechano use EPSILON [55]). The
verification framework proposed by Giner and Pelechano
also requires the tester to provide a specification document
that includes a description of the test model (in HUTN [55])
and the oracle (in EVL [55]). The EPSILON tool [55] takes
the HUTN description to generate test models and the EVL
script to verify the output model generated by the model
transformation [GinerTDD]. The weakness of both frame-
works is that the frameworks do not consider coverage in
generating test cases; thus, there is no guarantee that the
frameworks are able to detect all the errors in the model
transformation. Both frameworks only test the model trans-
formation based on the test models provided by the testers.

The framework by Darabos et al. provides more cover-
age support than the frameworks by Giner and Pelechano,
and Lin et al. When generating test models, the framework
by Darabos et al. uses mutations to ensure wider test cov-
erage (this method is explained in Sect. 2.1.1). With regard
to the errors that can be detected, all three frameworks are
able to identify missing elements (i.e., the generated model
does not have elements that are expected), additional ele-
ments (i.e., the generated model has additional elements that
should not have been generated), and value differences (i.e.,
attributes in the target model have different values than the
ones expected). The method used by the testing engine to
detect errors is the same for all three frameworks, which is to
compare the generated model with the expected model. [Lin-
Framework] provides a mature test analyzer where the test
results are highlighted in the target model. [DarabosFrame-
work] and [GinerTDD] do not discuss their test analyzer in
great detail; thus, the authors assume that the test analyzers
are still being researched.

A somewhat different approach is taken by Stiirmer.
Instead of comparing the result of the transformation with
an expected output, this framework compares a simulation
of the test model with the results of executing the gener-
ated model [StiirmerFramework]. This implies, of course,
that the framework only works when the target models are
executable. But it does have the advantage that the frame-
work can detect dynamic errors (i.e., errors that can be found
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only by executing the model). In contrast, the frameworks
by Giner and Pelechano, Lin et al., and Darabos et al. only
consider static errors.

As a summary, research on testing frameworks focuses on
end-to-end tooling for testing transformations. However, a
stable end-to-end tooling framework for testing model trans-
formations does not yet exist.

2.2 Theorem proving

In general, testing provides only partial guarantees of cor-
rectness. This is why a long-standing challenge in computer
science has been to formally prove the correctness of compil-
ers. Despite notable efforts toward this goal (e.g., [19]), for-
mal verification of compilers has not scaled to modern-day
compilers which perform complex optimizations. Moreover,
whereas the traditional challenge was to prove the equiva-
lence of source code and generated machine code, for model
transformations, the challenge is harder still, since the task is
to show equivalence of models generated from other models.
For realistic modeling languages such as UML, there may be
significant ambiguity about the semantics of the source and
target languages, which makes formal proof impossible.

Nevertheless, the challenge of formally proving the cor-
rectness of model transformations is still an important one
since code generated from models will inevitably be used
in mission- and safety-critical applications. Code for these
kinds of applications must undergo thorough certification
processes (e.g., DO178B [82]) to ensure that the code can be
trusted. Current certification authorities only allow the use of
code generators if the generators themselves have been qual-
ified according to the same processes. The authors know of
only one model-to-code generator currently qualified accord-
ing to such standards (the KCG code generator in the SCADE
suite [23]).

There is a body of work in the literature which specifically
aims at achieving formal proofs for model transformations.
These proofs may not necessarily yield full behavioral cor-
rectness but do, in many cases, provide limited formal guar-
antees which can complement testing-based approaches. In
general, theorem provers are used to verify transformation
rules or to verify the model transformation by proving prop-
erties of the generated output models. The first technique is
called direct verification, and the second technique is called
indirect verification. Direct verification approaches verify a
transformation’s rules expressed in some language. In con-
trast, indirect verification approaches verify the output of
applying the transformation. Both approaches have advan-
tages and disadvantages. For indirect verification, the trans-
formation can never be guaranteed to be fully correct; it is
only guaranteed correct for cases where the transformation
has been executed. However, this is usually sufficient because
a transformation itself is rarely deployed; rather, it is the out-
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put of a transformation that is deployed. In addition, it is an
order of magnitude less complex to verify the output of a
transformation rather than the transformation itself because
the transformation rules must take care of all possible ways
of generating output models. On the other hand, indirect ver-
ification means that a transformation cannot be packaged and
then applied without an accompanying verification of the out-
put. Direct verification does provide such a possibility, but at
the expense of increased complexity of verification. Further-
more, the type of properties that can be proved using direct
and indirect approaches differ—for example, confluence can
only be proven from the transformation rules directly while
reusability of the target model can only be determined by ana-
lyzing the target model. These two methods of verification
therefore complement each other.

Both direct and indirect approaches can be further clas-
sified into certification and non-certification approaches.
Certification approaches not only verify model transforma-
tions but also provide checkable evidence that the verifica-
tion was performed correctly. Typically, this evidence is a
human-readable or machine-checkable proof. Not all meth-
ods that use theorem provers for verification are certification
approaches. We only classify an approach under certification
if a proof is produced by the theorem prover that is in a form
suitable for independent validation. This means that the proof
must be either human readable or machine checkable by a
formally verified proof checker. We also note at this stage
that the definitions of indirect versus direct and certification
versus non-certification also apply to model checking—based
approaches. Such approaches are discussed in Sect. 2.4.

2.2.1 Direct approaches without certification

We first discuss direct, non-certification approaches. Recall
that these are approaches that apply theorem proving to ana-
lyze the rules that define a transformation, but do so in a
way that does not explicitly generate human- or machine-
checkable evidence that the verification was performed cor-
rectly.

Calegari et al. [21] formalize ATL [51] transformations
and some operations of the ATL transformation language
(e.g., the alllnstances operation) into a Calculus of Inductive
Construction (CIC) specification [CalegariProof]. The CIC
specification is proven using the Coq theorem prover, and this
will verify that the model transformation is able to generate
a target model that meets certain invariants.3

3 Calegari et al. [21] mention that their approach is for certifying model
transformations. However, we classity this approach as non-certification
because there is no discussion about proof certificate generation in. Our
definition of certification requires more than simply using a theorem
prover (Coq in this case), since the output of a theorem prover is not
necessarily independently checkable.

Similarly, Stenzel et al. [88] propose a framework for-
malizing the QVT operational transformation and the QVT
language into a specification that can be processed by the
KIV system [8] [StenzelProof]. The framework is applied
to verify Java code generators for security properties and
syntactic correctness. However, the framework requires the
source model to be transformed to an intermediate Java model
(a model conforming to a Java metamodel in ECore). This
means that the framework is rather restricted in terms of the
source modeling language. Jackson et al. [47] verify syntactic
correctness of model transformations by formalizing model
transformations as constraint logic programming (CLP) logic
programs [49] [JacksonProof]. The FORMULA [48] tool
verifies syntactic correctness by proving that the type of each
model element in the target model is a meta-element of the
target metamodel. A notable contribution of this approach
is that it also formalizes the MOF model. The approach can
also be used in automatic test model generation, similar to
the [SenAlloy] approach.

Asztalos et al. [6] and Cabot et al. [20] formalize invari-
ants obtained from model transformation specifications and
use theorem provers to prove properties of the model trans-
formation. These invariants are constraints on the meta-
model, conditions in the transformation (the where and when
clause in QVT), pre-conditions and post-conditions of the
model transformation. Cabot et al. synthesize the invari-
ants into a specification that can be checked with a theorem
prover* [CabotOCL]. The user then specifies a set of pred-
icates (denoting a set of properties) that refers to the trans-
lated invariants. The theorem prover checks these predicates
to prove properties of the model transformation. Asztalos
et al. [6] [AsztalosADL] propose a similar technique but
create a new language called the assertion description lan-
guage (ADL) to write these assertions. The ADL invariants
are identified automatically using the VMTS tool. Asztalos
et al. also propose a few deduction rules to derive new invari-
ants from the initial invariants using the SWI-Prolog tool.
These invariants are added into the control-flow graph of
the model transformation, which is created by VMTS, and
checked using the same tool.

The approach by Cabot et al. verifies many properties of
the model transformation such as termination, determinism,
and executability (the reader is referred to [20] for the full
list of properties and their definitions). The expressiveness of
the ADL also allows the [AsztalosADL] approach to verify
the same properties as the [CabotOCL] approach.

In both approaches [CabotOCL] and [AsztalosADL], the
model transformation specification is written in a textual lan-
guage such as OCL. An approach by Lano and Rahimi [64]
uses UML models and OCL statements (that is, a combina-

4 Cabot et al. mention that constraint solvers and SAT solvers can also
be used with their approach.
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tion of a graphical and textual language) to create a specifi-
cation of a model transformation. Existing methods are then
used to translate the UML models and OCL statements into
a formal B specification. UML class diagrams are used in
specifying transformation rules where a set of transforma-
tion rules is modeled as a class with common data used by
the rules as attributes. The conditions and order of execution
of transformation rules are modeled using an activity dia-
gram. OCL is used to specify the pre- and post-conditions
of each transformation rule and constraints on the model
transformation as a whole. The translation of UML models
and OCL statements to B is performed automatically using
a tool, UML Reactive System Development Support (UML-
RSDS) [LanoB]. This approach is used to verify syntactic
and semantic correctness, uniqueness, and confluence (read-
ers are referred to [64] for the definition of these properties).

The research described above verifies a formalized declar-
ative specification of a model transformation. This is of
course an advantage because it simplifies the task of formaliz-
ing the transformation. However, a potential criticism is that
the declarative specification may not match the operational
definition of the transformation. Hence, these approaches
require a further verification task to be completed, which is to
verify that the operational and declarative definitions match.
None of these approaches address this additional verification
task.

As a summary, direct verification approaches using the-
orem proving have applied many types of theorem provers
to verify model transformations written in both declarative
and operational languages. These approaches also require the
model transformation to be translated into a formalism that
can be proved by the theorem prover. So far, none of the
approaches discuss the verification of the translation mech-
anism.

2.2.2 Direct approaches with certification

This subsection discusses direct, certification approaches,
that is, approaches which verify the transformation rules
directly but also generate checkable evidence that verifi-
cation was carried out correctly. Certification approaches
are different in applicability and cost than non-certifying
approaches. This kind of certification is important in prac-
tice because safety-critical application developers will not
necessarily trust a verification task just because a theorem
prover was applied; after all, there are other elements in the
verification that cannot be trusted such as the formalization
of the language, and theorem provers can contain bugs too.
By producing evidence that can easily be checked by either
a human expert or an external tool, the confidence in the ver-
ification task is increased. However, this confidence comes
with a price because all elements of the approach (e.g., the
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theorem prover and the translation mechanism) will also need
to generate a checkable evidence.

One example of a direct, certification approach is the
technique known as proofs-as-programs [43]. In proofs-as-
programs, a high-level specification of a program is formu-
lated as an existential formula. A proof of this formula must
provide a ‘witness’ or instantiation of the existential variable.
This witness is interpreted as a program and, hence, the for-
mula’s proof provides not only a program but also a proof
that the program satisfies the specification. Hence, proofs-
as-programs can be used to transform high-level models into
programs: a model is expressed as an existential formula and
the technique returns both a proof of the formula and a pro-
gram which instantiates the existential variable. The proof
therefore acts both as the target program and also a proof that
the model and generated program are equivalent. We classify
proofs-as-programs as a direct approach because proof rules
are used to encode transformation rules, so the transforma-
tion rules are formal by definition. Typically, a theorem prov-
ing environment is used to specify the proof rules, and this
environment will provide some correctness guarantees for
the rules, such as well-formedness. In addition, the seman-
tics of the rules can be formally proven within the theorem
proving environment because the proof rules are lemmas. We
also classify proofs-as-programs as a certification approach
because the approach provides a proof which can be indepen-
dently checked by another theorem prover. Crucially, this is
different than the approaches described in Sect. 2.2.1 where
a formal proof was produced for a formalization of the trans-
formation not the transformation itself; proofs-as-programs
therefore do not require an additional verification task of
proving the equivalence of a transformation and its formal-
ization.

Over the years, proofs-as-programs have been scaled
up to larger programs using the power of state-of-the-art
provers such as Coq [46]. Still, however, proofs-as-programs
do not scale in general to industrial size problems. This
is because automated theorem provers need to be used to
generate the proofs; interactive or manual theorem prov-
ing is too costly. In focussed domains, however, proofs-
as-programs have been demonstrated to work in practice.
For proof-as-programs to succeed, the domain must be well-
structured, well-understood, and tightly constrained. Other-
wise, the automated theorem prover will have difficulty in
generating the proof since complex domains will have too
many rules, and hence, the size of the search space grows
exponentially.

Researchers at NASA Ames Research Center showed the
practicality of the approach if applied to domain-specific
modeling languages. They developed Amphion [98], which
relies on proofs-as-programs but provide an intuitive graphi-
cal interface for code generation from models of space geom-
etry problems [Amphion]. In Amphion, all theorem proving
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activities are hidden from the user and users are not required
to have knowledge of formal proof. The programs generated
are corrected by construction and, in fact, human-readable
explanations of proofs are available to be provided as evi-
dence to certification authorities [106].

The concept of proofs-as-programs has been developed
further for model transformations with proofs-as-model
transformations [78] [PoernomoProof]. Generally, proofs-
as-model transformations are similar to proofs-as-programs.
A specification of a model transformation is given as a con-
straint specifying the pre-conditions and post-conditions of
the transformation. This can be formally specified as a V3
term, and the term is formally proven using formal tools
such as PVS or Coq. From this term, a function representing
the model transformation is extracted. However, the scope
of [78] is limited to a single transformation rule, whereas
model transformations normally consist of many transfor-
mation rules. Another work by the same author addresses
this concern using partial-order specification to link rules
together [79]. The partial-order specification is defined based
on the order of executing the transformation rules, and where
the transformation rules can be executed in different orders
or when the order is not defined, the approach selects an arbi-
trary root element from the source metamodel and starts with
the transformation rules that transform that element.

Before applying the [PoernomoProof] approach, one
needs to formalize the source and target metamodels. In [78],
the source and target metamodels are formalized into a math-
ematical formalism called constructive type theory [78],
while in [79], the metamodels are formalized using the Cal-
culus of Inductive Construction [21]. Therefore, the suc-
cess of the [PoernomoProof] approach depends on the cor-
rectness of the formalized source and target metamodels.
Since proofs-as-model transformations are based on proofs-
as-programs, it is a valid assumption to assume that proofs-
as-model transformations have the same scalability issue.

To summarize, direct approaches with certification are
limited in applicability to domains that are well defined and
properly structured. Research is limited to the generation of
evidence for verification tasks performed by theorem provers.
Research on producing evidence for the translation mecha-
nism is still in its infancy.

2.2.3 Indirect approaches without certification

This subsection describes indirect, non-certification appro-
aches. Recall that indirect verification approaches do not
verify the transformation rules directly; rather, they verify
properties of the target model generated by the transforma-
tion.

Egea and Rusu [32] verify whether a model transforma-
tion can generate well-formed target models [EgeaProof].
Well-formedness is verified by checking whether the target

model conforms to OCL constraints of the target metamodel.
In [32], OCL constraints on the target metamodel and the
target model itself are translated into membership equational
logic (MEL) [16] specifications. Then, using the ITP/OCL
tool [26] in MAUDE, the target model is proven to be well
formed if:

1. the MEL specification denoting the target model is an
instance of the MEL specification denoting the target
metamodel.

2. the MEL specification denoting the OCL constraints is
true in the MEL specification denoting the target model.

Conformance to constraints has also been used by Baar
and Markovi¢ [7] to verify model transformations [Baar-
Constraint]. The difference between this approach and the
[EgeaProof] approach is where the approach is applied and
how properties are verified. Baar and Markovié¢ [7] apply
their approach to verify semantic preservation of refactor-
ing transformations. They achieve this by checking whether
an instance of the target model conforms to the constraints
on the target model. The verification is performed using an
evaluation function implemented as a graph transformation.

The above approaches focus only on the target model.
Some indirect approaches, however, compare the source and
target models; these are still classified as indirect as they do
not formalize the transformation rules themselves but for-
malize the semantics of the source and target language and
then verify semantic preservation. Blech [13], for example,
has done this for a statechart-to-Java transformation formal-
ized within Isabelle/HOL, although the semantics of the lan-
guages has been simplified [BlechProof].

Barbosa et al. [9] propose a more novel approach to ver-
ifying model transformations. Their approach extends the
MDA architecture to include a semantic metamodel and a
semantic model. The approach uses these models to ver-
ify semantic preservation of model transformations [Bar-
bosaSemModel]. A semantic metamodel is a model describ-
ing a language to specify the semantics of a model (e.g., a
metamodel of the OCL language). It also includes operational
semantics—rewrite rules specifying behaviors of the model.
The semantic metamodel is created manually. A semantic
model is an instance of the semantic metamodel that is spe-
cific to the source/target model (e.g., OCL constraints on the
source/target model). In this approach, the semantic model is
generated automatically using a model transformation called
a semantic equation. The approach uses a theorem prover
to verify semantic preservation of model transformations by
proving equivalence between a source semantic model and
a target semantic model. This approach has also been used
with a model checker to verify preservation of safety and
liveness properties [10]. Safety and liveness properties are
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checked from the operational semantics of the source and
target model that are generated using the rewrite rules.

To summarize, indirect approaches using theorem prov-
ing are currently focused on verifying model-to-model trans-
formations, and these approaches require the translation of
the target model into a formalism that can be handled by a
theorem prover. The difference between these approaches is
in how they use the theorem provers. Theorem provers are
either used to prove that the model transformations can gen-
erate target models with certain properties or compare the
target models with oracles.

2.2.4 Indirect approaches with certification

Indirect approaches with certification extend indirect
approaches by providing checkable evidence that verifica-
tion was done correctly. Typically, an automated prover is
applied every time an artifact is generated from a model,
and this is done in such a way that the proof can be inde-
pendently checked either by a certification authority or by a
trusted machine-based proof checker. In the latter case, the
proof checker is typically a small kernel proof checker only
a few hundred lines long, which has been formally verified.
The approach reduces the complexity of verifying the trans-
formation because the size of code generated is much smaller
than the size of the code needed to implement the transfor-
mation system.

Three notable approaches along these lines are Autofil-
ter [31], AutoBayes [84], and AutoCert [30]. Autobayes
and Autofilter are similar but apply to different domains—
geometric state estimation in the case of Autofilter, and data
analysis problems in the case of Autobayes [Autofilter]. Both
Autofilter and Autobayes are domain-specific model-based
code generators. In each case, an automated theorem prover is
applied to check properties of the generated code. In general,
however, automated theorem provers do not scale. Therefore,
the key idea in Autofilter and Autobayes is to use the trans-
formation system to automatically insert annotations into the
generated code which allow automated theorem proving to
scale. Since the transformation system is domain specific, it
therefore contains domain knowledge about the structure and
behavior of the generated code. This domain knowledge can
be used to simplify the theorem proving process. As a simple
example, Autobayes can generate loop invariants which can
then be both checked by the theorem prover but also used
when checking the correctness of the generated code. Such
an approach is more efficient than trying to prove the cor-
rectness of the code without the aid of the loop invariants
since this would necessarily involve loop invariant discov-
ery, which is an unsolved problem. Hence, the approach in
Autobayes and Autofilter can be seen as the transformation
system inserting annotations into the code which act as hints
to the theorem prover and direct its search for a proof. Auto-
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Cert [30] [AutoCert] advocates a model-driven approach for
developing the annotations.

As a summary, indirect certification approaches such as
these have only been applied to model-to-code transforma-
tions. One reason for this is because certification authorities
are more interested in certifying the final product (i.e., the
code) rather than the intermediate products (i.e., models).

2.3 Graph theory

Since models can be represented as graphs and model trans-
formations can also be specified using graph-based lan-
guages, a common choice to formalize transformations is
to use graph theory in constructing a formal model of the
model transformations. Several researchers have managed to
prove properties of graph transformations by manually con-
structing mathematical proofs using graph theory.

Kiister et al. [58] prove that a graph transformation is ter-
minating and confluent by checking whether the graph trans-
formation meets certain criteria [KiisterCriteria], namely

1. a graph transformation is terminating if the elements in
the source pattern are finite, and there are no transforma-
tion rules that add these elements in such a way that leads
to infinite recursive execution.

2. a graph transformation is confluent if it contains rules
that are parallel independent.

Ehrig et al. [33] prove that a bidirectional graph transfor-
mation is information preserving (identifiers of elements in
the source model are preserved in the target model and vice
versa) by proving that there exists an inverse of the graph
transformation that can produce the source model [EhrigIn-
foPreserving]. Their approach is different than the inverse
oracle proposed in [72] where this approach only needs to
prove that the inverse transformation exists, while, in [72],
the inverse oracle needs to be created.

Hermann et al. [40] propose an approach related to
[EhrigInfoPreserving]. The approach proves invertibility of
bidirectional model transformations. A bidirectional model
transformation is invertible if the forward transformation is
an inverse of the backward transformation and vice versa.
The main contribution of this work is a theorem (and its
proof) that defines conditions of an invertible graph trans-
formation. The conditions are (1) the model transformation
must be deterministic and (2) the model transformation must
be tight (the model transformation contains transformation
rules that modify elements in the source and target models)
[HermannInvertibility].

Although proving properties of graph transformation
using this technique has been successful, Strecker [89] argues
that using graph theory alone is insufficient to verify whether
the target model corresponds to the source model. His
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argument is that, when using graph theory, complex reason-
ing about graph morphism is needed when the target model
graph is compared with the source model graph. Therefore,
he suggests that the graph patterns be translated into for-
mulae in first-order logic and uses theorem provers (e.g.,
Isabelle/HOL) to prove their properties [StreckerProof].
This work clearly specifies the limitations of graph theory.

To summarize, graph theory approaches base their veri-
fication on the notion of a model transformation as a graph
transformation. This supports the verification of properties,
such as invertibility, that have not been considered by other
approaches.

2.4 Model checking

Other than using theorem provers, model checkers have also
been used to verify model transformations.

2.4.1 Indirect approaches

Model checking using indirect approaches means verifying
model transformations by model checking target models.
Varr6 and Pataricza [99] first transform source and target
models into equivalent transition systems [ VarroMC]. Prop-
erties which should be preserved by the transformation are
translated from a source-specific representation to a target-
specific representation (manually or using a model transfor-
mation) and then model checked on the both source and tar-
get transition system.> The approach is restricted to behav-
ioral models which have an appropriate translation to transi-
tion systems. This work also does not address the scalability
issues of model checking.

A similar approach has been taken by Staats and Heim-
dahl [87], who have shown reasonable scalability to around
12,000 lines of code when using model checking to verify
the preservation of properties in the Simulink-to-C code gen-
erator [StaatsMC]. Ab. Rahim and Whittle [1] also use a
similar approach to verify UML state machines-to-Java code
generators. The novelty of the approach is that it can ver-
ify model transformations developed by a third party where
the transformation rules are not available [AbRahimMC].
The approach includes an informal static analysis task that
requires the user to study the generated code in order to
understand how the code generator works. The result of this
analysis is then used by the user to formulate assertions that
would later be added into the generated code using another
model transformation. These assertions capture the seman-
tics that the code generator is supposed to preserve. A model
checker is used to check the assertions in the generated code.
This approach also addresses the scalability issue by using

> The target-specific representation of the properties being verified
should be verified by domain experts.

heuristics, proposed in [2], to select a state space reduction
technique, which can be applied in the generated code, based
on design patterns in the source model.

The approach proposed by Narayanan and Karsai [74]
verifies preservation of reachability using two methods: (1)
checking bisimilarity of source and target models using struc-
tural correspondence (for every element in the source model,
there exists a corresponding element in the target model) and
(2) model checking the target model [NarayananMC].

Summarizing this section, indirect verification using
model checking has focused on verifying model-to-code
transformations. These approaches have also started address-
ing the state space explosion problem.

2.4.2 Direct approaches

The opposite of indirect approaches is direct approaches
where model transformations are verified by model checking
the model transformation rules or a translation of the model
transformation rules into some formal language. Direct
approaches using model checking have been proposed by
Garcia and Moller [36], Boronat et al. [15], Varré et al. [100],
Wimmer et al. [107], and Lucio et al. [69].

Garcia and Moller [36] translate an EMOF model, OCL
and the transformation rules into a +CAL specification [62]
and use the TLC model checker [61] to check for well-
formedness of the output model and termination of the model
transformation [GarciaMC]. Boronat et al. [15] formalize
source model, target model, and transformation rules into
graph rewriting logic and model check using a model checker
in MAUDE [BoronatMC].

Varr6 et al. [100] and Wimmer et al. [107] use Petri Nets
to analyze termination of model transformations. Wimmer et
al. [107] verify model transformations written in the Trans-
formation Net language, a domain specific language based
on Colored Petri Nets (CPN). The model transformation is
translated into CPN, and using an analyzer tool, the CPN
specification is checked for termination, confluence, and cor-
rectness [Wimmer CPN]. Termination is verified by check-
ing whether there is a loop in the transformation that creates
new elements in the source model. Confluence is checked
by detecting whether there are two transformation rules that
process the same element in the source model at the same
time. Correctness is verified by comparing the generated tar-
get model and the expected target model where the latter is
entered into the analyzer tool.

Varr6 et al. [100] derive a Petri Net model (how this task
is performed is not clearly explained in the paper) from the
model transformation. The Petri Net model is an abstrac-
tion of the model transformation. The model transforma-
tion is abstracted using the cone of influence reduction tech-
nique where only certain model elements are included in
the abstraction. The model transformation terminates if it
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reduces the number of elements in the Petri Net after execut-
ing a finite number of steps [ VarroPN]. This is similar to the
criteria used by Kiister et al. [58].

Lucio et al. [69] take a more traditional approach in
using model checking to verify model transformations. They
develop a symbolic model checker that verifies model trans-
formations written in the DSLTrans language [LucioMC].
The model checker constructs a state space of the model
transformation, which consists of states that correspond to
a set of possible execution combinations of transformation
rules. The model checker verifies a property by traversing
the state space and checking whether the property holds in
each path. If a property does not hold, the model checker
produces a counter example in the form of a sequence of
transformation rules leading to the wrong transformation
result. The model checker has been successfully used in ver-
ifying a model transformation with an order of magnitude
of 10* states. Unfortunately, the model checker used in this
approach can only be used for DSLTrans model transfor-
mations. Model transformations in the DSLTrans language
are structured as a graph. The language has a built-in fea-
ture where the language requires transformation rules to be
encapsulated in boxes called ‘layers,” and these layers are
connected with each other. These layers are like nodes in a
graph and the connections are the edges. The graph of con-
nected layers is the state space being checked by the model
checker. Therefore, a model checker can be developed for
this language because of how the transformation rules are
structured.

As a summary, the solution taken by most researchers to
directly verify model transformations using model checking
is similar to the one taken by researchers who use theorem
proving, which is to translate the model transformations into
models that can be verified by a model checker.

2.4.3 Certifying approaches

There have been some attempts to provide evidence for cer-
tification when model checking transformations.

Chaki et al. [24] use a combination of a technique called
Proof-Carrying Code (PCC) [75] and model checking to gen-
erate certified software component binaries from UML stat-
echart specifications [ChakiPCC-MC]. PCC is a method
which instruments binaries with formal proofs of their cor-
rectness. It has been used primarily to support safe execu-
tion of untrusted code: a code receiver can check the proof
before running the code. In Chaki’s work, model checking is
used at the specification level to derive invariants from a set
of safety requirements (expressed as assertions over UML
states). These invariants are then passed to a PCC-based tool
which generates proof certificates. The approach is novel in
that it addresses both UML-to-C and C-to-assembly transfor-
mations. However, the derivation of the specification invari-
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ants using model checking is not fully automatic and requires
manual assistance in the form of explicit annotations.

A more innovative approach is to replace the theorem
prover in the PCC approach with a model checker. The
CVT [77] tool does exactly this for C code generation from
Statemate specifications [CVTPneuli]. It uses a BDD-based
decision procedure, called TLV, to formally check the veri-
fication conditions generated for individual C programs pro-
duced by the transformation. The verification conditions are
large logical implications which, if proven true, imply a cor-
rect refinement. The approach has been shown to scale to
realistic problems of a few thousands lines of code. A sig-
nificant part of CVT is in appropriately decomposing the
verification conditions, so that TLV can prove them. This is
handled by a series of automatic decomposition procedures
as well as by applying a number of standard abstract interpre-
tation techniques (e.g., to replace integer and float variables
by symbols).

One issue with using a model checker as the proof engine
is how to convince a certification authority that the model
checker itself has not made an error. When using a theo-
rem prover as proof engine, this problem is solved by apply-
ing an alternative formally verified kernel proof checker that
checks the proof provided by the theorem prover. Model
checkers, however, are not capable of outputting a checkable
certificate—a model checker either returns a counterexample
in the case that a bug is found, or simply ‘yes.” The notion
of a certifying model checker resolves this issue by modi-
fying model checkers to produce, in the case of success, a
deductive proof which can then be independently checked
[CertifyMC] [73].

In another line of work, Karsai and Narayanan [53] pro-
posed two methods of certifying model transformations
[KarsaiMC]. The first method is by establishing links
between the elements in the target model to the elements
in the source model. These links will then be checked using
a bisimilarity checker tool to prove that the target model is a
bisimulation of the source model. Other than using the bisim-
ilarity checker, the target model is also checked for required
properties using a model checker. The links and the results
from the bisimilarity checker and the model checker are the
proof certificate.

The second method is through ‘semantic anchoring,
which requires the translation of the source and target model
to an equivalent formal model that is written in the same
formal language. The formal models will then be checked
for bisimulation. One issue with this method is that in cases
where the source and target languages contain different ele-
ments, the method can only check for weak bisimulation
(i.e., checking bisimulation only for elements of the source
and target languages that are semantically equal). For exam-
ple, when verifying a UML class diagram to entity-relational
diagram (ERD) transformation, bisimilarity between the
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relationships in the class diagram and the relationships in
the ERD will not be checked because they are semantically
not equal. Another problem with this method is the extra
verification of the translation of the source and target model,
although this can be performed using the first method.

Verifying and certifying model transformations using
model checking have advanced to also include model-to-
model transformations. However, similar to theorem prov-
ing, these approaches only cover certification of the model
checking. Certification of other parts of the approach (if any)
has not been considered.

2.5 Inspection and metrics

The authors conclude this part of the review by briefly men-
tioning work on the inspection of generated code and on met-
rics for model transformation. The argument made in [91]
is that the inspection of auto-generated code is made eas-
ier because of the availability of models [StiirmerInspect].
A process is presented in which it is easier to distinguish
between errors produced by the code generator and errors
introduced by an incorrect model—if there is confidence in
the correctness of the model, then any errors in the generated
code must come from the generator.

Metrics could potentially be useful in assessing non-
functional qualities of model transformations, such as under-
standability, modifiability, modularity, consistency, and com-
pleteness [94]. For metrics to be useful in verification, these
metrics are mapped to these qualities/properties. Amstel
et al. [96] define these qualities as internal qualities and
assessing these qualities should be performed using direct
assessment (i.e., assessing the quality by looking at the model
transformations and not at the quality of the generated model,
which Amstel defines as indirect assessment).

Amstel has defined several metrics for model transforma-
tions such as the number of fan-ins and fan-outs of a trans-
formation function that is used to measure the dependency
between transformation functions. These metrics are used to
assess ASF+SDF [5], ATL [95], and QVT [93]. For these
metrics to be useful, Amstel et al. [5] relate these metrics
with quality attributes based on evidence from an empirical
study in which model transformation developers were asked
to assess a set of model transformations, answer a question-
naire relating to the model transformations and participate in
a semi-structured interview [AmstelMetrics]. The empirical
study was conducted for six real-world model transforma-
tions by four experienced ASF+SDF users.

Vignaga [102] has also proposed a set of metrics for ATL,
and there are similarities between these metrics and the met-
rics for ATL transformations proposed by Amstel et al. [95]
[VignagaMetrics]. The important difference between [102]
and [95] is in how they relate their metrics with model trans-
formation qualities. Amstel et al. use empirical assessment

techniques to establish this relation, while Vignaga uses intu-
ition.

Both Vignaga and Amstel do not clearly mention how
they produced the metrics. Work by Kolahdouz-Rahimi and
Lano [65,80] uses the Goal-Question—Metric (GQM) [66]
method to identify a set of metrics for measuring compre-
hensibility of model transformations [RahimiMetrics]. This
work also investigates how model transformation languages
influence the comprehensibility of a model transformation
by measuring the comprehensibility of the same model tran-
formation written in five different languages.

Saeki et al. [83] present a preliminary approach for model
transformation metrics, which is based on applying metrics
to the source and target models [SaekiMetrics]. Using this
technique, for example, it could be discovered that a transfor-
mation has a significantly negative impact on the modularity
of the source model, which may imply that the modular struc-
ture of the source is not preserved in the target.

The works discussed above have proposed some general
metrics and then established the relationship between these
metrics and the qualities of model transformations. There
are works that focus specifically on certain model transfor-
mation qualities. Kapova et al. [52] use metrics to assess
the maintainability of QVT relational model transformations
[KapovaMetrics]. The metrics are taken or modified from
the metrics presented in [5,39,56,81]. The thresholds for
these metrics, indicating how the value of a metric should
be interpreted, have not yet been identified.

Amstel et al. [97] use metrics along with dependency
analysis and metamodel coverage analysis to address the
problem of maintaining model transformations. These analy-
ses are used to understand the model transformations and
raise maintenance issues such as dependency and modular-
ity [AmstelAnalysis]. This paper uses two toy-like exam-
ples for its experiments. A more realistic result may be
obtained by using real-world model transformations. Ams-
tel et al. [93] have also used metrics to assess the perfor-
mance of ATL, QVT relational, and QVT operational model
transformations. This study not only assesses and compares
the performance of the model transformation engines of the
three languages but also how different input model structures
and how the language constructs of the modeling languages
influence performance [AmstelPerformance]. The thresh-
old for measuring performance using metrics has not been
identified.

It is also worth mentioning how these approaches are
implemented. Amstel et al. [5,93,95,97] use tools to get the
measurement value for the metrics. They use a parser to gen-
erate a model of the model transformation and develop a
model transformation to get the value of the metrics. Kapova
et al. [52] and Vignaga [101] also use the same method in
collecting the value of some of their metrics (some met-
rics have to be collected manually). For the empirical study,

@ Springer

www.manaraa.com



1016

L. Ab. Rahim, J. Whittle

Amstel et al. use Kendall’s 75, rank correlation test, butitis not
clear whether this test is performed manually or using a tool.
For the dependency analysis and metamodel coverage analy-
sis, Amstel et al. use ExtraVis [27] and TreeComparer [42]
to visualize the dependency between model transformation
functions and the relationship between source model ele-
ments and the model transformation functions that operate
on the model elements. Saeki et al. [83], and Kolahdouz-
Rahimi and Lano [80] do not mention the tools they used in
their assessment.

To summarize, research on metrics for assessing proper-
ties of model transformations has covered many properties,
such as maintainability and performance, and tools have been
provided to calculate values for the metrics. Interestingly, the
research has also involved practitioners through empirical
studies.

3 Classification

The authors now classify the approaches described accord-
ing to a number of finer-grained criteria. This classification
helps in identifying some trends in the research community,
commonality in the proposed approaches along with their
similarities and differences. The criteria used in the classifi-
cation are:

1. Technique: whether a transformation is verified directly
(verifying the model transformation rules) or indirectly
(verifying properties of the generated output).

2. Formality: whether they are formal (proving properties
using formal methods such as theorem proving or model
checking), semi-formal (a combination of informal and
formal methods), or informal (checking properties using
testing, inspection, or metrics).

3. Effort: whether the approaches require a high (difficult
to be achieved without tools), medium (easier/faster if
tools exist) or low (can be carried out manually) degree
of effort to apply.

4. Tooling: whether tool support is currently available—
no (not supported), yes (fully supported), not yet (tools
under development), partial (partially supported), or n/a
(no tools needed).

5. Properties: which properties are verified for a transfor-
mation—type correctness (TC—elements in the target
model are instances of elements in the target metamodel),
preservation of static semantics of models (SSM—the
target model conforms to well-formedness constraints of
the target metamodel), preservation of dynamic seman-
tics of models (DSM—the transformation preserves
semantic properties), correspondence between source
and target (C—the target model contains elements that
correspond to elements in the source model), or seman-
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tics of model transformations (SMT—termination, con-
fluence, executability, etc).

6. Transformation Language: for which transformation
languages the technique is applicable.

7. Transformation Type: for which types of transforma-
tion the technique is applicable—model-to-code (M2C),
model-to-model (M2M), or both.

8. Transformation Paradigm: for which paradigm of
transformations an approach applies to, based on the
categorization in [28] (e.g., operational, relational, or
template-based).

9. Input Complexity: the amount of input data that must
be provided by the user for the approach to work—
complex requires many different types of input with com-
plex structures and behaviors (e.g., large, complex meta-
models); simple requires relatively simple input data.

10. Output Complexity: how detailed the output generated
by the approaches is—some approaches give explana-
tions along with their output (detail); others give just the
output (simple).

Tables 1 and 2 classify the approaches discussed in Sect. 2
according to these criteria. It is not always possible to fully
categorize approaches: a hyphen denotes that a criterion is
not appropriate for a particular approach; N/S stands for not
specified. Obviously, some of the criteria above require a
subjective decision to classify approaches. Such decisions
have been made by the authors after careful and detailed
reading of the literature describing these approaches.

3.1 Trends

In this subsection, we comment on several trends in the
research community which can be identified from our survey.
The trends are presented according to the technical approach
classification from Sect. 2, i.e., testing, theorem proving,
model checking, graph theory, and inspection and metrics.
Before that, there are certain global trends that appear to be
true regardless of the technical approach taken.

3.1.1 Overall trends

Our first observation is that the effort needed to carry out veri-
fication tasks—in any category—is generally high. Although
our rating of effort (low, medium or high) is largely subjec-
tive, the rating was obvious in all cases, and so we can be
confident that all verification approaches tend toward high
effort. This is not surprising for formal methods such as the-
orem proving or model checking; however, it is perhaps more
surprising for testing-based approaches. The ‘high’ effort rat-
ing illustrates that, for model transformations, even testing
is a labor-intensive task due to the complexity and scale of
model transformations and the number of tasks involved:
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Table 1 Categorization by technique, formality, effort, tooling & properties

Approach Technique Formality Effort Tooling Properties
[FleureyCBT] - Informal High Yes -
[FleureyEMOF] - Informal High Yes -
[MottuMutation] - Informal High No -
[WangRules] - Informal High Yes -
[ZelenovEffMeta] - Informal High Yes -
[LamariSpec] - Informal High Partial -
[Kiister WhiteBox] - Semi-formal High No -
[SenAlloy] - Semi-formal High Yes -
[MottuOracle] Direct Informal High No C
[BaudryContracts] Indirect Informal High No C
[KolovosECL] Indirect Informal High Yes C
[CariouContracts] Indirect Informal Medium Not yet C
[LanoCondition] Indirect Informal Medium Yes TC, DSM
[OrejasPattern] Direct Formal High Yes C
[LinFramework] Indirect Informal High Partial TC
[StiirmerFramework] Indirect Semi-formal High Yes DSM
[DarabosFramework] Indirect Semi-formal High No TC
[GinerTDD] Indirect Informal Medium Yes C
[Amphion] Direct Formal High Yes DSM
[PoernomoProof] Direct Formal High Yes TC, SSM
[BlechProof] Indirect Formal High Yes DSM
[AutoFilter] Indirect Formal High Yes DSM
[AutoCert] Indirect Formal High Yes DSM
[CalegariProof] Direct Formal High Yes TC
[StenzelProof] Direct Formal High Yes DSM
[JacksonProof] Direct Formal High Yes TC
[EgeaProof] Indirect Formal High Yes SSM
[BaarConstraint] Indirect Formal Medium N/S DSM
[AsztalosADL] Direct Formal High Yes TC, SMT
[CabotOCL)] Direct Formal High Yes SMT
[LanoB] Direct Formal High Yes TC, SMT, SSM
[KiisterCriteria] Direct Formal High No SMT
[EhrigInfoPreserving] Direct Formal High No C
[HermannInvertibility] Direct Formal High Yes SMT
[StreckerProof] Direct Formal High Yes C
[ChakiPCC-MC] Indirect Formal High Partial DSM
[CVTPnueli] Indirect Formal High Yes DSM
[CertifyMC] Indirect Formal High Yes DSM
[KarsaiMC] Indirect Formal High Yes DSM
[VarroMC] Indirect Formal High Yes DSM
[StaatsMC] Indirect Formal High Yes DSM
[AbRahimMC] Indirect Formal High Yes DSM
[NarayananMC] Indirect Formal High Yes DSM
[GarciaMC] Direct Formal High Yes SSM
[BoronatMC] Direct Formal High Yes DSM
[WimmerCPN] Direct Formal High Yes SMT
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Table 1 continued

Approach Technique Formality Effort Tooling Properties
[VarroPN] Direct Formal High N/S SMT
[LucioMC] Direct Formal High Yes C
[BarbosaSemModel] Indirect Formal High Yes DSM
[StiirmerInspect] Indirect Informal High No -
[AmstelMetrics] Direct Informal Medium Yes SMT
[AmstelAnalysis] Direct Informal Medium Yes SMT
[AmstelPerformance] Direct Informal Medium Yes SMT
[SaekiMetrics] Direct Informal Medium No DSM
[VignagaMetrics] Direct Informal Medium No DSM
[KapovaMetrics] Direct Informal Medium Partial DSM
[RahimiMetrics] Direct Informal Medium No DSM

generating test models, preparing oracles, executing the test
cases, etc. One possible consequence of this for the research
community is to focus more attention on test automation and
specifically on reducing the amount of effort in testing trans-
formations. To date, most research has focussed on getting
the ‘basics’ of testing right: test models, oracle checking, etc.
These are necessary first steps and much have been achieved;
now is perhaps the time to specifically address the level of
effort required. Level of effort is usually only considered
implicitly or as an after thought. In particular, although some
aspects of testing model transformations are always going
to be labor intensive, there could be more work on reusing
test models and on test model prioritization. These are well-
studied areas in testing more generally but have not yet been
fully researched in the context of transformations.

A similar story can be seen when looking at the inputs
required by the verification approaches; in all cases, we have
classified them as ‘complex.’ This is perhaps to be expected
since the artifact being verified is a model transformation,
thus the inputs are either models (source models and meta-
models), the model transformation itself (including its spec-
ification and constraints), or both. One interesting analysis
to consider in the future would be to unpick where are the
points of essential and accidental complexity when verify-
ing model transformations. Brooks [17] makes the distinc-
tion between complexity which is inherent and unavoidable
(essential) and complexity which is introduced as a result
of the software engineering approach. Arguably, approaches
to verifying model transformations could get a better handle
on how to manage complexity if the points of essential and
accidental complexity were explicitly highlighted.

In general, there appears to be no clear trend as to which
transformation languages and paradigms are preferred in
model transformation verification. A wide variety of transfor-
mation languages and paradigms have been considered, and
there is no obvious dominant language or paradigm around
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which the research community has coalesced. This may
speak to the relative immaturity of the field, in that no single
transformation language has received universal acceptance,
or it may simply speak to the fact there is no one-size-fits-all
solution in terms of transformation language/paradigm. This
level of diversity is consistent with a recent study on indus-
trial use of model-driven engineering (MDE), where over
100 MDE tools were seen to be in use in industry [44,45].
One can identify a trend within the technical approaches,
however. Generally speaking, the direct theorem proving
approaches consider declarative transformation languages.
This is because of the inherent complexity of verifying oper-
ational languages. In contrast, testing approaches have been
applied to both declarative and operational paradigms.

Interestingly, a majority of the research reported in
this paper has addressed model-to-model transformations.
Indeed, 68 % of the approaches verify model-to-model trans-
formations (only four of the approaches address both model-
to-model and model-to-code). This is a pleasing observation
as it shows that the modeling community has taken on the
challenge of how best to transfer existing verification meth-
ods to the case when the target is a model.

3.1.2 Trends in testing approaches

The general approach taken by researchers in testing model
transformations is to transfer standard testing techniques
from program testing to transformation testing. This makes
sense and is the reason why we see significant efforts toward
generation of test cases, test case coverage, and oracle check-
ing. As noted above, however, not all areas of testing have
yet been transferred to transformations. Test case reuse and
prioritization are notable exceptions.

There have been two key challenges that have been
addressed in testing model transformations: automation of
test case generation and oracle checking. For the former, the
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Table 2 Categorization by language, paradigm, type, input & output
Approach Language Paradigm Type Input Output
[FleureyCBT] N/S N/S M2M Complex -
[FleureyEMOF] N/S N/S M2M Complex Simple
[MottuMutation] Tefkat, Java & Kermeta Operational & relational M2M Complex -
[WangRules] Tefkat Relational M2M Complex Detail
[ZelenovEffMeta] N/S GT M2C Complex -
[LamariSpec] N/S N/S M2M Complex -
[Kiister WhiteBox] Java Operational M2M Complex Simple
[SenAlloy] N/S N/S M2M Complex -
[MottuOracle] N/S N/S M2M Complex Simple
[BaudryContracts] N/S N/S M2M Complex Simple
[KolovosECL] ECL Relational M2M Complex Simple
[CariouContracts] N/S N/S Both - -
[LanoCondition] QVT Relational M2M Complex Simple
[OrejasPattern] Triple algebras GT M2M Complex Simple
[LinFramework] CSAW Operational M2M - -
[StiirmerFramework] N/S GT M2C Complex -
[DarabosFramework] N/S GT M2M Complex -
[GinerTDD] Epsilon Relational M2M Complex Simple
[Amphion] N/S N/S M2C Complex Detail
[PoernomoProof] N/S N/S M2M Complex Detail
[BlechProof] N/S N/S M2C Complex Detail
[AutoFilter] Prolog Template M2C Complex Detail
[AutoCert] N/S N/S M2C Complex Detail
[CalegariProof] ATL Relational M2M Complex Detail
[StenzelProof] QVT Operational M2C Complex Detail
[JacksonProof] N/S N/S M2M Complex Detail
[EgeaProof] N/S N/S N/S Complex Detail
[BaarConstraint] N/S GT M2M Complex Simple
[AsztalosADL] VMTS N/S M2M Complex Simple
[CabotOCL)] QVT/AGG Relational/ GT M2M Complex Detail
[BarbosaSemModel] ATL Declarative M2M Complex Detail
[LanoB] UML-RSDS Declarative M2M Complex Detail
[KiisterCriteria] AGG GT M2M Complex Detail
[EhrigInfoPreserving] TGG GT M2M Complex Detail
[HermannInvertibility] TGG GT M2M Complex Detail
[StreckerProof] AGG GT M2M Complex Detail
[ChakiPCC-MC] N/S N/S M2C Complex Detail
[CVTPnueli] N/S N/S M2C Complex Detail
[CertifyMC] N/S N/S M2C Complex Detail
[KarsaiMC] GReAT GT Both Simple Simple
[VarroMC] VIATRA GT M2M Complex Detail
[StaatsMC] N/S N/S M2C Complex Detail
[AbRahimMC] Any Any M2C Complex Detail
[NarayananMC] GReAT GT M2M Complex Detail
[GarciaMC] N/S N/S M2M Complex Simple
[BoronatMC] QVT Relational M2M Complex Detail
[WimmerCPN] TN Relational/ operational M2M Complex Detail
@ Springer
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Table 2 continued

Approach Language Paradigm Type Input Output
[VarroPN] N/S GT M2M Complex Simple
[LucioMC] DSLTrans Relational M2M Complex Detail
[StiirmerInspect] N/S N/S M2C Complex Detail
[AmstelMetrics] ASF+SDF, ATL, QVT Relational/ operational M2M Complex Simple
[AmstelAnalysis] ATL, QVT, Xtend Operational/ template Both Complex Complex
[AmstelPerformance] ATL, QVT Relational/ operational M2M Complex Complex
[SaekiMetrics] N/S N/S Both Complex Simple
[VignagaMetrics] ATL Declarative/ imperative M2M Complex Simple
[KapovaMetrics] QVT Relational M2M Complex Simple
[RahimiMetrics] QVT, Kermeta, VIATRA, ATL, UML-RSDS Relational/ operational M2M Complex Simple

key advances have been in (1) generating intuitively mean-
ingful test models and (2) defining coverage criteria based
on metamodel coverage. In particular, the notion of an effec-
tive metamodel in coverage seems to be highly effective. In
terms of oracle checking, the approaches have principally
been partial—in the sense that most approaches check con-
straints on the target model. These constraints are necessarily
partial and usually only capture static properties. These lim-
itations arise due to the complexity of assessing whether a
target model is indeed the expected one, especially when
dynamic properties are to be considered. This does appear to
be a major research gap and an area where further investi-
gation is required. One notable case where dynamic proper-
ties have been considered is that of [StiirmerFramework],
which stands alone at focusing on the case where target mod-
els are executable. Strangely, one rather obvious approach to
testing target models seems to have been largely ignored—
rather than simply checking static constraints of the target
model, one could develop a test suite whose test cases could
be applied directly to the target model. Perhaps this solu-
tion is overly complex due to the need to have a separate
test suite for every target model generated, but there may be
ways of reusing parts of the test suites given that there is
inherent similarity between target models generated by the
same transformation.

A clear trend in testing approaches is toward verifying
model-to-model transformations. Although from a research
perspective, this is to be expected, it is interesting to
note that a recent survey of industrial practice found that
most transformations used in industry are still model-to-
code [44,45].

To summarize, there are three main gaps in exist-
ing research on testing model transformations. Firstly,
approaches are very specific to the transformation language
that a transformation is written in. As illustrated by Table 2,
there is no concerted effort among researchers to concentrate
on one or a small number of transformation languages; rather,
each researcher applies his/her approach to his/her own pre-
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ferred language. This is problematic as it limits learning in the
field as a whole. In particular, there should be more research
on testing approaches that are independent of the transforma-
tion language—that is, they can be applied to a transforma-
tion written in any transformation language. Although some
of the approaches surveyed in this paper may indeed satisfy
this criterion, the research is always described in the context
of a particular transformation language, and little attempt is
made to discuss the generality of the approach to other trans-
formation languages. This is a clear gap which should be
filled to consolidate the knowledge in the area.

Secondly, although a number of tools and, in particular,
testing frameworks have been developed, there is as yet no
‘complete’ testing infrastructure available. Even the most
advanced testing frameworks do not include key features con-
sidered by other researchers. For example, none of the testing
frameworks described in Sect. 2.1.3 does everything: some
do not include explicit coverage criteria, some address only
static properties, whereas others consider dynamic proper-
ties. This is not a criticism; we simply mean to point out that
the area of testing model transformations is relatively mature
compared to the other areas considered in this survey, and so
perhaps now is the time to consider the development of an
end-to-end testing tool that brings all aspects of the research
discussed in Sect. 2.1 together.

Finally, as has already been noted, the majority of testing
approaches to date have considered static properties primar-
ily. This is because the approach of using constraints as test
oracles has proved to be popular, but constraints are limited to
static properties. We therefore see consideration of dynamic
properties as a growth area for testing model transformations.

3.1.3 Trends in theorem proving approaches

Section 2.2 considered attempts to apply theorem proving to
the problem of verifying model transformations. Recall that
the literature was classified according to direct versus indirect
and certification versus non-certification approaches. As with
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testing, the general approach has been to transfer standard
methods from formal methods to the new problem of ver-
ifying model transformations. Typically, direct approaches
focus on verifying transformations given as declarative spec-
ifications. In these cases, a declarative specification language
is translated into a formal language, and a theorem prover is
then used to prove properties. What is missing here is the fact
that to be executed transformations usually need to have an
operational specification. These approaches typically do not
prove equivalence of the operational and declarative speci-
fications. Indirect approaches do not directly apply theorem
proving to the transformation rules but, rather, they apply it to
the target models generated. These approaches have largely
been applied in the context of model-to-code transforma-
tions because it is easier to apply existing theorem proving
tools to programs—theorem proving tools are complex and
to develop new ones for modeling languages is highly non-
trivial.

Based on our survey, we have identified three fruitful
areas for future research. The first relates to certification
approaches. We would argue that, given the complexity of
applying theorem proving in practice, this is only worth-
while if the objective is certification in safety- or mission-
critical domains. This implies therefore that theorem proving
approaches are mostly only relevant for model-to-code trans-
formations because certification authorities are normally
more interested in certifying the final product, i.e., the code,
rather than intermediate products. Achieving a full end-to-
end certification framework, however, is extremely difficult
in practice because in such an end-to-end approach, every
aspect of the framework must be verified and evidence of
each verification must be given. To illustrate this point, it
is not enough to simply apply a theorem prover to a gen-
erated program because the theorem prover itself must be
verified. One solution to this in our survey has been to check
the proofs generated by the theorem prover using a small
kernel proof checker, which may only be a few hundred lines
long but has been formally verified (formally verifying most
non-kernel provers is not practical). This is just one example
where there are additional verification tasks needed to ensure
an end-to-end certification approach. But all the approaches
in our survey suffer from this problem. Another example is
where researchers translate transformation rules into a for-
mal language and then prove properties of the transformation
using a prover for this formal language. Researchers tend to
ignore the issue of whether the translation itself is correct.
We therefore argue that certification of model transforma-
tions will not be taken seriously until research is undertaken
to define a framework within which all pieces of the frame-
work are verified and evidence is prepared. Even if doing
so is not feasible in practice, researchers should still define
such a framework and clearly state which parts of the frame-
work are certified, so that there can be a greater degree of

confidence in how close we are to achieving an end-to-end
solution for certification.

Secondly, indirect approaches appear at first sight to be
very appealing because they verify the target model rather
than the transformation rules, which is an order of magni-
tude less complex as discussed in Sect. 2.2.3. However, a
key point to understand is that indirect approaches are not
applicable in all contexts. Since indirect approaches verify
only the output model, they cannot be used to provide whole-
sale guarantees of a transformation: each output must be indi-
vidually verified on a case-by-case basis. There are certain
contexts where such an approach is insufficient. Consider,
for example, the recent trend toward models @run.time [12].
Models@run.time is a term used to describe the use case
where models are runtime artifacts. In particular, one case of
models @run.time is where model transformations are also
run-time artifacts: that is, a model is maintained at runtime
and is used to generate new models or code in real time
which is then deployed automatically. Such techniques have
application in context aware or self-adaptive systems [25].
Although it is not impossible to use indirect approaches
in such a scenario, it clearly would be difficult because
every time the runtime infrastructure generates an artifact,
it would have to be verified on-the-fly. Hence, not only the
models would be @run.time but so would be the model
transformation verification! In this scenario, therefore, direct
approaches to model transformation would be preferable.
The point is that the choice of direct versus indirect is depen-
dent on context and neither approach trumps the other in all
cases.

Finally, as has already been noted, there are additional ver-
ification tasks that are necessary but not considered by many
of the works reviewed in our survey. One special case of this,
as mentioned above, is equivalence of a declarative specifica-
tion of a transformation and its operational implementation.
Checking for such an equivalence relationship, although dif-
ficult, is an under-researched area, and we therefore suggest
it as an additional avenue for further research.

3.1.4 Trends in graph theory approaches

Graph theory approaches are very mature and have a distin-
guished history in terms of their application to model trans-
formation. Despite a rich and mature theoretical background,
however, graph transformations have received limited accep-
tance in practice. There are a number of possible reasons for
this. One might be that there is a lack of tools that provide both
intuitive and practical modeling environments but also incor-
porate the theoretical underpinnings. Although there have
been recent attempts to provide such tools (e.g., Moflon [3]),
graph transformations are still very much an academic rather
than industrial pursuit. However, the importance of graph
theory applications to model transformations should not be
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neglected. Typically, those working on graph transformations
lead the way in considering important issues, which may
then prompt other researchers to consider these issues in the
future. A good example of this is bidirectional transforma-
tions. Of all the work in our survey, it was only when looking
at graph-theoretic approaches that we saw explicit consider-
ation of bidirectional transformations. This suggests an area
for future research, therefore, both for those based in graph
theory but also for those pursuing other technical approaches
such as those based on testing.

Another gap appears to be in the fact that some stan-
dard analyses from rule-based systems have not been widely
applied to verifying model transformations. Although our
survey provides ample evidence of research efforts look-
ing at properties such as termination and confluence (our
so-called semantic model transformation properties), other
techniques such as critical pair analysis (CPA) do not seem
to have been widely considered. CPA is a technique for com-
puting conflicting rule matches statically. It has not received
much attention when verifying model transformations. Part
of the reason for this could be that most graph transforma-
tion tools do not implement CPA. (A notable exception is the
AGG tool, which was used by Jayaraman et al. [50] in apply-
ing CPA to detect conflicts between model transformations
when composing models of features in a software product
line).

3.1.5 Trends in model checking approaches

The application of model checking in model transformation
verification is relatively immature compared to the use of
theorem proving. It has mainly been used in one of two
ways—either to check the equivalence of formalizations of
the source and target models or within an indirect approach
to model check the target model. Most approaches focus on
verifying dynamic semantics of the models, which makes
sense because this is what model checkers are typically used
for.

We can identify two interesting trends that are perhaps
under-researched and deserve further attention from the com-
munity. Firstly, the approach by Ab. Rahim [AbRahimMC]
seems novel (we are, of course, biased) in the way that it
uses information available in the source model to assist in
verifying the target model. Recall that the approach extracts
pertinent facts from the source model and adds them as anno-
tations in generated code. These annotations are in this case
assertions which are then used to assist the model checker
in directing its search. This is an approach that has been
applied before but only when the formal engine for veri-
fication is a theorem prover not a model checker. In addi-
tion, [AbRahimMC] addresses the state space explosion in
model checking by extracting properties of the source model
to reduce the state space in the target: in this case, if certain
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design patterns are used in the source, these can be used to
decide between standard state space reduction techniques in
the target.

More generally, we feel that further research could be
undertaken where information from the source model is taken
into account when verifying the target model. Indeed, this
illustrates an advantage of verification that model transfor-
mation has—normally, when undertaking verification, one
only has the artifact-to-be-verified to analyze. However, for
model transformations, there are multiple artifacts, includ-
ing both the target and the source. And the source model
may contain important information (e.g., about design deci-
sions that have been applied as in the case above) which can
be used to simplify and possibly scale up the verification of
the target.

Another area that deserves further attention is that of cer-
tifying model checkers. Although one approach to this has
been included in our survey, there has been only limited atten-
tion in developing model checkers that can output a checkable
witness, which can be used to verify that the model checker
is operating correctly. If model checkers are to be used more
widely in certification approaches in the future, such certify-
ing model checkers will be crucial.

3.1.6 Trends in metrics and inspection approaches

Research in verification using metrics and inspection is still
at an early stage where the research focuses on establishing
the metrics and mapping these metrics to quality attributes
of model transformations. Threshold values for these met-
rics have not been established; thus, there is no standard
rule to say that a model transformation is good or bad with
respect to certain qualities. Furthermore, this area of research
is still at the stage where the approaches are not well sup-
ported by tools. Availability of tools is important but not
as crucial as in other approaches because the effort needed
to use the approach is only ‘medium.” The importance of
tools will increase when model transformations become more
complex. Another area where further research is needed is
in empirical studies. These metrics-based approaches work
by trying to declare connections between values of metrics
and well-known qualities (e.g., maintainability). But making
these connections must be grounded in real-world experience
and, to date, they have been made either only on intuition or
based on rather limited empirical studies.

The kind of properties of model transformations checked
in this approach are quite different from the other approaches.
That is, the properties are typically quality attributes such as
maintainability, testability, and performance. In this sense,
metrics-based verification is geared more toward good
software engineering principles than the other verification
approaches. This is a welcome development and shows that,
in the future, it is likely that there will be more consideration
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of the question of how to develop a good transformation in
an efficient manner. Another obvious trend is that metrics
and inspection approaches are mostly used to verify model-
to-model transformations.

One interesting avenue for future research is illustrated
by [StiirmerInspect], where the observation is made that
the inspection of auto-generated code is made easier because
of the availability of models. More generally, one could argue
that inspection of the target is made easier because of avail-
ability of the source. This is an insight similar to that made in
the previous subsection: that there is information available in
the source model that should not be ignored when verifying
the target. The same seems to hold true for inspection, which
suggests, more broadly, that there should be further research
that takes source model information into account in a whole
range of transformation-related activities.

4 Conclusion and outlook

This paper has presented current approaches for verifying
model transformations. These approaches were described
according to the techniques they used to verify model trans-
formations: testing, theorem proving, model checking, met-
rics or graph theory. The paper also gave a fine-grained classi-
fication of the approaches according to several criteria, and as
aresult, the authors have identified several trends in research
in model transformation, as well as a number of research gaps
and future directions for research.

Testing model transformations has reached a level of
maturity where tools that adapt well-known program testing
techniques to model transformation verification can be prac-
tically applied. For theorem proving and model checking—
based techniques, many of the approaches use existing auto-
mated theorem provers and model checkers. Consequently,
they translate the transformation rules into a formalism that
can be verified by the theorem prover or the model checker.
These approaches should also include a process to verify the
translation tool but this is a step that is usually ignored. If the
translation tool is a model transformation itself then existing
approaches to verify model transformations could potentially
be used, particularly approaches that verify correspondence
between source and target models. Another path to consider
is to reduce the gap between the transformation and formal
specification languages by proposing a set of libraries that
formally define the instructions in these languages. Several
transformation languages, especially the OCL-like languages
(e.g., ATL and ETL), have similar instructions (e.g., creating
a subset by selecting elements of a larger set that meet certain
rules); thus, the libraries are applicable to many languages
and could be reused.

Not all theorem proving approaches require the for-
malization of the model transformation languages. Several

approaches such as [CabotOCL] and [AsztalosADL] only
formalize the model transformation specification, and this is
an advantage because it removes the difficult task of formal-
izing the transformation language. However, one can argue
that the formal theorem being proved is the transformation
specification and not the actual transformation.

The issue with translating model transformations also
plagues several model checking approaches. An exception
to this is the [LucioMC] approach that uses a specially
developed model checker that can verify model transforma-
tions in the DSLTrans language. The key to model checking
DSLTrans model transformations is that the transformation
rules are organized into a tree structure. Therefore, a model
checker for different languages can be developed as long
as the transformation rules can be structured as a tree. This
resolves the issue of translating model transformations for
model checking approaches.

The problem of state space explosion is not generally
addressed by the approaches that use model checking,
although this problem is an important issue. Model checking
approaches should address this issue by either using sym-
bolic or bounded model checkers (such as the one used
in [69]) or using state space reduction techniques (such as
the techniques described in [2]). The techniques proposed
in [2] can be extended for verifying model transformations
using direct techniques where state space reduction tech-
niques are selected based on design patterns appearing in the
model transformation. For reduction techniques to be iden-
tified from design patterns, the patterns for model transfor-
mations must first be identified. Researchers may also want
to consider modular designs for model transformations that
allow model transformations to be decomposed into compo-
nents that can be verified separately.

Another issue with the current testing, model checking,
and theorem proving approaches is that most of them are lan-
guage dependent (i.e., they are used to verify model transfor-
mations specific to certain languages). To resolve this issue
for model checking approaches, a model checker that can
execute different transformation rules must be developed. To
resolve this issue for theorem proving approaches, the idea of
developing a set of libraries for similar language constructs of
different languages could be used. By having these libraries,
the approach can work with different languages that share
similar language constructs.

Finally, a possible research work for metrics is in identi-
fying the threshold value for each metric for developers to
know what is a high value, what is a low value, and what
is an acceptable value. Furthermore, the threshold value can
also be used to determine whether a model transformation
has certain quality attributes associated with the metrics. One
method to identify the threshold value is to perform empirical
studies. Researchers should also consider combining the met-
rics for declarative and imperative languages because model
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transformations often contain both declarative and impera-
tive elements.

To summarize, there has been a huge amount of attention
in verifying model transformations in recent years. This has
led to some level of maturity, although, of course, further
avenues for research still exist. Based on our survey, we sug-
gest that the following are the most important lines of future
research:

— Modularity and Reuse. There has been limited atten-
tion looking at reusing verification information or tasks
when verifying model transformations. This issue arises
in testing where there has been a lack of research on test
case reuse or test case prioritization. It also arises in for-
mal approaches where developing a transformation in a
more modular way would allow techniques for formal
modular verification to be applied.

— Transformation Language Independence. Almost all
approaches are applied within the context of a specific
transformation language. Given industry practice, it may
not be realistic to assume that everyone uses a single stan-
dard transformation language. But this implies that more
research is needed into approaches that are in some sense
independent of the transformation language: this could be
either by identifying similar constructs common to many
languages and developing generic approaches for those
constructs, proposing techniques that can be applied to
different language-specific verification approaches, or by
focusing on indirect approaches which do not necessarily
need to know anything about the transformation language
used.

— End-to-end tooling. As with most research areas, there
is a distinct lack of tools that address all aspects of the
verification process from start to finish. There is no sin-
gle testing tool or framework which integrates all the
research represented in this survey. In formal certifica-
tion approaches, there is a need to specify a framework
which clearly identifies the various verification tasks and
states clearly which parts of a verification process have
been certified and which have not. It is unlikely that we
will get to the point of an end-to-end certified verification
process, but researchers should do a better job of being
up-front about the weak points of their process.

— Make More Use of Source Model Information. When
verifying a target model, only a few approaches take into
account information in the source model. This seems like
a missed opportunity. For example, a source model may
contain important design information (such as the use of
design patterns) which can be used to tell a verifier about
the modular structure of the model; if this modular struc-
ture is preserved in the target, it can be used in modular
verification.

@ Springer

— The Software Engineering of Model Transformations.
Work on metrics-based approaches seems to be the first to
consider software engineering questions for model trans-
formations: that is, how to build a good transformation
which is maintainable, high quality, and reusable. This is
a fruitful area for further research, especially as it relates
to the verifiability of model transformations; if transfor-
mations are written in a modular way, for example, they
will be easier to verify.

— Future Kinds of Systems. The field of software and
system engineering is changing rapidly, and research in
model transformation verification needs to respond to
these changes. One particular trend we have highlighted
in this paper is the use of models and models at runtime.
These approaches may require specialized verification
methods for transformations. We have seen no research
on this topic to date.

— Be Grounded in Industrial Practice. The vast major-
ity of research in model transformation verification is
very academic in nature. Researchers do not have a good
understanding of how transformations are developed and
applied in practice, and without such knowledge, it is
impossible to prioritize research in the area. Therefore,
we argue for a concerted effort toward a greater under-
standing of how industry uses transformations. Prelimi-
nary work toward this goal has been reported in [44,45].

— Higher-Order Transformations. Higher-order transfor-
mations (HOTs) [92] are transformations that generate
transformations. The fundamental concepts of HOTs are
that model transformations are also models, and there-
fore, existing model transformation verification tech-
niques may be applicable to HOTs. However, verifying
HOTs may be more challenging, for example, when using
an indirect approach since the argument that verifying the
target model is less complex than the transformation can-
not be applied for HOTs.

Model transformation verification research is an active
field. There have been a significant number of important
advances in recent years, and we would expect activity to
grow in this area. We offer the eight open questions above as
areas for future research; these are areas that have received
relatively little attention but which are crucial to the success
of model transformation verification as a research field.
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